
BIG Data, BIG responsibility
Maneage: Managing data lineage for long-term and archivable reproducibility

(Published in CiSE 23 (3), pp 82-91: DOI:10.1109/MCSE.2021.3072860, arXiv:2006.03018)

Mohammad Akhlaghi
Centro de Estudios de F́ısica del Cosmos de Aragón (CEFCA), Teruel, Spain

Royal Observatory Coffee talk; Edinburgh
23rd of May 2023

Most recent slides available in link below (this PDF is built from Git commit a1886b8-dirty):

https://maneage.org/pdf/slides-intro-short.pdf

https://doi.org/10.1109/MCSE.2021.3072860
https://arxiv.org/abs/2006.03018
https://akhlaghi.org
http://git.maneage.org/slides-intro.git
https://maneage.org/pdf/slides-intro-short.pdf

Our main project: J-PAS with Observatorio Astrof́ısico de Javalambre (OAJ)

J-PAS will observe the northern sky in 56 medium-band filters (∼ 14nm):

LSST filter: 6 (image from speclite docs):

https://speclite.readthedocs.io/en/latest/filters.html

J-PAS filters: 56 (Bonoli+2021: 2021A&A...653A..31B)

E
ff
ic
ie
nc
y

�[Å]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

3000 4000 5000 6000 7000 8000 9000 10000 11000

https://ui.adsabs.harvard.edu/abs/2021A%26A...653A..31B

Result: photo-spectra of every pixel of the non-Galactic northern sky (like an IFU)!

http://archive.cefca.es/catalogues/minijpas-pdr201912/navigator.html

http://archive.cefca.es/catalogues/minijpas-pdr201912/navigator.html

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

Science is a tricky business

Data analysis [...] is a human behavior. Researchers who hunt hard enough will turn up a result that fits
statistical criteria, but their discovery will probably be a false positive.

Five ways to fix statistics, Nature, 551, Nov 2017.

https://www.nature.com/articles/d41586-017-07522-z

Notebooks are not long-term solutions (see appendices of Akhlaghi+2021: arXiv:2006.03018)

Results from run on
May 10th, 2022:

Conda setup:
39 dependencies

Jupyter (with Pip):
61 dependencies

Web browser has
more dependencies;
with fluid/evolving
web technologies.

They can contain
binary components.

https://arxiv.org/abs/2006.03018

Notebooks are not long-term solutions (see appendices of Akhlaghi+2021: arXiv:2006.03018)

Results from run on
May 10th, 2022:

Conda setup:
39 dependencies

Jupyter (with Pip):
61 dependencies

Web browser has
more dependencies;
with fluid/evolving
web technologies.

They can contain
binary components.

https://arxiv.org/abs/2006.03018

Notebooks are not long-term solutions (see appendices of Akhlaghi+2021: arXiv:2006.03018)

Results from run on
May 10th, 2022:

Conda setup:
39 dependencies

Jupyter (with Pip):
61 dependencies

Web browser has
more dependencies;
with fluid/evolving
web technologies.

They can contain
binary components.

https://arxiv.org/abs/2006.03018

Notebooks are not long-term solutions (see appendices of Akhlaghi+2021: arXiv:2006.03018)

Results from run on
May 10th, 2022:

Conda setup:
39 dependencies

Jupyter (with Pip):
61 dependencies

Web browser has
more dependencies;
with fluid/evolving
web technologies.

They can contain
binary components.

https://arxiv.org/abs/2006.03018

Notebooks are not long-term solutions (see appendices of Akhlaghi+2021: arXiv:2006.03018)

Results from run on
May 10th, 2022:

Conda setup:
39 dependencies

Jupyter (with Pip):
61 dependencies

Web browser has
more dependencies;
with fluid/evolving
web technologies.

They can contain
binary components.

https://arxiv.org/abs/2006.03018

The dependency tree (Matplotlib is only one dependency of Jupyter)

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2020, CiSE, DOI:10.1109/MCSE.2019.2949413).

https://doi.org/10.1109/MCSE.2019.2949413

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)

▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)

▶ Only guarantee the Long Term Release kernels.
▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

Are containers the solution? Yes, but ... for the short term

▶ Containers are large (many giga-bytes)
▶ Expensive to archive!

▶ Example: SHARE (enabling remote connection to Virtual machines with project environment):
▶ 2nd place in Elsevier’s “Executable paper grand challenge” of 2011.

▶ SHARE’s image repository was taken offline in 2019!

▶ Even the challenge webpage is no longer available: http://www.executablepapers.com

▶ Container are binary (tailored to certain kernels+CPUs)
▶ Only guarantee the Long Term Release kernels.

▶ Become un-readable, multi-gigabyte binary blobs in ∼ 10 years!

▶ Even if you store them on Zenodo!

▶ Only on common CPUs architectures.

▶ Containers themselves are hard to reproduce.
▶ Example: 2020CSE....22a.102M use ‘FROM ubuntu:16.04’, but if run today, images are from 2021.

https://is.ieis.tue.nl/staff/pvgorp/share
http://www.executablepapers.com
https://ui.adsabs.harvard.edu/abs/2020CSE....22a.102M
https://partner-images.canonical.com/core/xenial

For longevity issues with Jupyter, Conda, Containers and etc ...

As well as a survey of depreciated/abandoned/lost solutions since the 1990s ...

... see the appendices in arXiv:2006.03018

https://arxiv.org/pdf/2006.03018.pdf

Our solution: CiSE 23 (3), pp 82-91: DOI:10.1109/MCSE.2021.3072860, arXiv:2006.03018

https://maneage.org

https://doi.org/10.1109/MCSE.2021.3072860
https://arxiv.org/abs/2006.03018

Recognition 1: RDA adoption grant (2019) to IAC for Maneage

For Maneage, the IAC is selected as a Top European organization funded to adopt RDA
Recommendations and Outputs.

▶ Research Data Alliance was launched by the European Commission, NSF, National Institute of Standards and Technology, and the Australian
Government’s Department of Innovation.

▶ RDA Outputs are the technical and social infrastructure solutions developed by RDA Working Groups or Interest Groups that enable data
sharing, exchange, and interoperability.

Recognition 2: “News and Views” in Nature Astronomy (DOI:10.1038/s41550-021-01402-3)

Free-to-read link: https://rdcu.be/cmYVx

https://doi.org/10.1038/s41550-021-01402-3
https://rdcu.be/cmYVx

Definitions & Clarification (from the National Academies report in 2019, DOI:10.17226/25303)

Replicability (hardware/statistical)

▶ Involves data collection.

▶ Inherently includes measurements errors
(can never be exactly reproduced).

▶ Example: Raw telescope image/spectra.

▶ NOT DISCUSSED HERE.

http://slittlefair.staff.shef.ac.uk

http://doi.org/10.17226/25303
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/L07/index.html

Definitions & Clarification (from the National Academies report in 2019, DOI:10.17226/25303)

Replicability (hardware/statistical)

▶ Involves data collection.

▶ Inherently includes measurements errors
(can never be exactly reproduced).

▶ Example: Raw telescope image/spectra.

▶ NOT DISCUSSED HERE.

http://slittlefair.staff.shef.ac.uk

http://doi.org/10.17226/25303
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/L07/index.html

Definitions & Clarification (from the National Academies report in 2019, DOI:10.17226/25303)

Replicability (hardware/statistical)

▶ Involves data collection.

▶ Inherently includes measurements errors
(can never be exactly reproduced).

▶ Example: Raw telescope image/spectra.

▶ NOT DISCUSSED HERE.

http://slittlefair.staff.shef.ac.uk

Reproducibility (Software/Deterministic)

▶ Involves data analysis, or simulations.

▶ Starts after data is collected/digitized.

▶ Example: 2 + 2 = 4 (i.e., sum of datasets).

▶ DISCUSSED HERE.

Wikimedia Commons

http://doi.org/10.17226/25303
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/L07/index.html
https://commons.wikimedia.org/wiki/File:Binary_blue.jpg

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.
▶ Plain text: Project’s source should be in plain-text (binary formats need special software)

▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.
▶ Free and open source software: Free software is essential: non-free software is not configurable,

not distributable, and dependent on non-free provider (which may discontinue it in N years).

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.
▶ Plain text: Project’s source should be in plain-text (binary formats need special software)

▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.
▶ Free and open source software: Free software is essential: non-free software is not configurable,

not distributable, and dependent on non-free provider (which may discontinue it in N years).

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.

▶ Plain text: Project’s source should be in plain-text (binary formats need special software)
▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.
▶ Free and open source software: Free software is essential: non-free software is not configurable,

not distributable, and dependent on non-free provider (which may discontinue it in N years).

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.
▶ Plain text: Project’s source should be in plain-text (binary formats need special software)

▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.
▶ Free and open source software: Free software is essential: non-free software is not configurable,

not distributable, and dependent on non-free provider (which may discontinue it in N years).

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.
▶ Plain text: Project’s source should be in plain-text (binary formats need special software)

▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.
▶ Free and open source software: Free software is essential: non-free software is not configurable,

not distributable, and dependent on non-free provider (which may discontinue it in N years).

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.
▶ Plain text: Project’s source should be in plain-text (binary formats need special software)

▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

▶ Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Founding criteria

Basic/simple principle:

Science is defined by its METHOD, not its result.

▶ Complete/self-contained:
▶ Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ Should be non-interactive or runnable in batch (user interaction is an incompleteness).
▶ Should be usable without internet connection.

▶ Modularity: Parts of the project should be re-usable in other projects.
▶ Plain text: Project’s source should be in plain-text (binary formats need special software)

▶ This includes high-level analysis.
▶ It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
▶ Version control (e.g., with Git) can track project’s history.

▶ Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ Verifable inputs and outputs: Inputs and Outputs must be automatically verified.
▶ Free and open source software: Free software is essential: non-free software is not configurable,

not distributable, and dependent on non-free provider (which may discontinue it in N years).

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Predefined/exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and dependen-
cies) is also critically important for reproducibility.

▶ Containers or Virtual Machines are a binary black box.

▶ e.g., with ‘FROM ubuntu:16.04’ (released in April 2016),

▶ in a Dockerfile, the OS image will come from (updated monthly!):
https://partner-images.canonical.com/core/xenial

▶ Maneage installs fixed versions of all necessary research software.

▶ Including their dependencies.
▶ All the way down to the C compiler.

▶ Installs similar environment on GNU/Linux, or macOS systems.

▶ Works like a package manager (e.g., apt, brew or Conda).

▶ ... but (!), its not a third party package manager.
▶ Build instructions are within same analysis project.
▶ e.g., see Conda’s build of Gnuastro (its gets updated behind your

back): https://anaconda.org/conda-forge/gnuastro/files

▶ Source code of all software in Maneage is archived on zenodo.3883409.

https://partner-images.canonical.com/core/xenial
https://anaconda.org/conda-forge/gnuastro/files
https://doi.org/10.5281/zenodo.3883409

Predefined/exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and dependen-
cies) is also critically important for reproducibility.

▶ Containers or Virtual Machines are a binary black box.

▶ e.g., with ‘FROM ubuntu:16.04’ (released in April 2016),

▶ in a Dockerfile, the OS image will come from (updated monthly!):
https://partner-images.canonical.com/core/xenial

▶ Maneage installs fixed versions of all necessary research software.

▶ Including their dependencies.
▶ All the way down to the C compiler.

▶ Installs similar environment on GNU/Linux, or macOS systems.

▶ Works like a package manager (e.g., apt, brew or Conda).

▶ ... but (!), its not a third party package manager.
▶ Build instructions are within same analysis project.
▶ e.g., see Conda’s build of Gnuastro (its gets updated behind your

back): https://anaconda.org/conda-forge/gnuastro/files

▶ Source code of all software in Maneage is archived on zenodo.3883409.

https://partner-images.canonical.com/core/xenial
https://anaconda.org/conda-forge/gnuastro/files
https://doi.org/10.5281/zenodo.3883409

Advantages of this build system

▶ Project runs in fixed/controlled environment: custom build of Bash, Make,
GNU Coreutils (ls, cp, mkdir and etc), AWK, or SED, LATEX, etc.

▶ No need for root/administrator permissions (on servers or super computers).

▶ Whole system is built automatically on any Unix-like operating system
(less 2 hours).

▶ Dependencies of different projects will not conflict.

▶ Everything in plain text (human & computer readable/archivable).

https://natemowry2.wordpress.com

https://natemowry2.wordpress.com

Software citation automatically generated in paper (including Astropy)

Software citation automatically generated in paper (including Astropy)

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Input data source and integrity is documented and checked

Stored information about each input file:

▶ PID (where available).

▶ Download URL.

▶ MD5-sum to check integrity.

All inputs are downloaded from the given PID/URL when necessary
(during the analysis).

MD5-sums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://arxiv.org/abs/1909.11230

Input data source and integrity is documented and checked

Stored information about each input file:

▶ PID (where available).

▶ Download URL.

▶ MD5-sum to check integrity.

All inputs are downloaded from the given PID/URL when necessary
(during the analysis).

MD5-sums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://arxiv.org/abs/1909.11230

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

▶ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

▶ A single rule can manage any number of files.

▶ Make can identify independent steps internally and do them in parallel.

▶ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

▶ Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

▶ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

▶ A single rule can manage any number of files.

▶ Make can identify independent steps internally and do them in parallel.

▶ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

▶ Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

▶ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

▶ A single rule can manage any number of files.

▶ Make can identify independent steps internally and do them in parallel.

▶ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

▶ Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Shown here is a portion of the NoiseChisel paper and its LATEX source (arXiv:1505.01664).

https://arxiv.org/abs/1505.01664

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Shown here is a portion of the NoiseChisel paper and its LATEX source (arXiv:1505.01664).

https://arxiv.org/abs/1505.01664

Analysis step results/values concatenated into a single file.

All LATEX macros come from a single file.

Analysis step results/values concatenated into a single file.

All LATEX macros come from a single file.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Let’s look at the data lineage to replicate Figure 1C (green/tool) of Menke+2020
(DOI:10.1101/2020.01.15.908111), as done in arXiv:2006.03018 for a demo.

ORIGINAL PLOT
The Green plot shows the fraction of papers mentioning
software tools from 1997 to 2019.

OUR enhanced REPLICATION
The green line is same as above but over
their full historical range.
Red histogram is the number of papers
studied in each year

101

102

103

104

105

N
um

.p
ap

er
s

(lo
g-

sc
al

e)

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0%

20%

40%

60%

80%

100%

Year

Fr
ac

.
pa

pe
rs

w
ith

to
ol

s

https://doi.org/10.1101/2020.01.15.908111
https://arxiv.org/abs/2006.03018

Makefiles (.mk) keep contextually separate parts of the project, all imported into top-make.mk

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The ultimate purpose of the project is to produce a paper/report (in PDF).

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The narrative description, typography and references are in paper.tex & references.tex.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex
Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Analysis outputs (blended into the PDF as LATEX macros) come from project.tex.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

But analysis outputs must first be verified (with checksums) before entering the report/paper.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Basic project info comes from initialize.tex.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The paper includes some information about the plot.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The final plotted data are calculated and stored in tools-per-year.txt.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The plot’s calculation is done on a formatted sub-set of the raw input data.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The raw data that were downloaded are stored in XLSX format.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The download URL and a checksum to validate the raw inputs, are stored in INPUTS.conf.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

We also need to report the URL in the paper...

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Some general info about the full dataset may also be reported.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

We report the number of papers studied in a special year, desired year is stored in .conf file.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

It is very easy to expand the project and add new analysis steps (this solution is scalable)

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-

year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

next-step.mk

next-step.tex

out-a.dat

out-b.dat

demo-out.dat

param.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Files organized in directories by context (here are some of the files discussed before)
project/

paper.tex

reproduce/

software/

config/

versions.conf

make/

high-level.mk

shell/ bibtex/

analysis/

config/

INPUTS.conf

param-1.conf

param-2a.conf

param-2b.conf

make/
top-prepare.mk

top-make.mk

initialize.mk

analysis1.mk

bash/ python/

tex/

src/
references.tex

Files organized in directories by context (now with other project files and symbolic links)
project/

COPYING paper.tex project README.md README-hacking.md

reproduce/

software/

config/

LOCAL.conf.in

versions.conf

checksums.conf

make/
basic.mk

high-level.mk

python.mk

shell/
configure.sh

bashrc.sh

bibtex/
fftw.tex

numpy.tex

gnuastro.tex

analysis/

config/

INPUTS.conf

param-1.conf

param-2a.conf

param-2b.conf

make/
top-prepare.mk

top-make.mk

initialize.mk

analysis1.mk

bash/
process-A.sh

python/

operation-B.py

fitting-plot.py

tex/

src/
references.tex

figure-1.tex

build/

Symbolic link to
LATEX build directory.

tikz/

Symbolic link to TikZ
directory (figures built
by LATEX).

.local/
Symbolic link to project’s software environment, e.g.,
Python or R, run ‘.local/bin/python’ or ‘.local/bin/R’

.build/
Symbolic link to project’s top-level build directory.
Enabling easy access to all of project’s built components.

.git/
Full project temporal provenance (version controlled history) in Git.

All questions have an answer now (in plain text: human & computer readable/archivable).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

All questions have an answer now (in plain text: so we can use Git to keep its history).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

New projects branch from Maneage

Today

▶ The project (answers to questions above) will evolve.

New projects branch from Maneage

Today

Tomorrow

▶ The project (answers to questions above) will evolve.

New projects branch from Maneage

Maneage

ad2c476

706c644

▶ Each point of project’s history is recorded with Git.

New projects branch from Maneage

Maneage

ad2c476

706c644 Project

53b53d6

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

New projects branch from Maneage

Maneage

ad2c476

706c644 Project

53b53d6

9f8cc74

8ebb784

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

Project

53b53d6

9f8cc74

8ebb784

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

▶ The template and project will evolve.

▶ During research this encourages creative tests
(previous research states can easily be retrieved).

▶ Coauthors can work on same project in parallel
(separate project branches).

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

▶ The template and project will evolve.

▶ During research this encourages creative tests
(previous research states can easily be retrieved).

▶ Coauthors can work on same project in parallel
(separate project branches).

▶ Upon publication, the Git checksum is enough to
verify the integrity of the result.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Recall that every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

▶ The template and project will evolve.

▶ During research this encourages creative tests
(previous research states can easily be retrieved).

▶ Coauthors can work on same project in parallel
(separate project branches).

▶ Upon publication, the Git checksum is enough to
verify the integrity of the result.

“Verified” image from vectorstock.com

https://www.vectorstock.com/royalty-free-vector/red-vintage-verified-stamp-retro-style-on-white-vector-22770076

Two recent examples (publishing Git checksum in abstract)

Two recent examples (publishing Git checksum in abstract)

Publication of the project

A reproducible project using Maneage will have the following (plain text) components:

▶ Makefiles.

▶ LATEX source files.

▶ Configuration files for software used in analysis.

▶ Scripts/programming files (e.g., Python, Shell, AWK, C).

The volume of the project’s source will thus be negligible compared to a single figure in a paper
(usually ∼ 100 kilo-bytes).

The project’s pipeline (customized Maneage) can be published in

▶ arXiv: uploaded with the LATEX source to always stay with the paper
(for example arXiv:1909.11230, arXiv:1911.01430, arXiv:2006.03018, arXiv:2007.11779
arXiv:2010.03742, arXiv:2112.14174).

▶ Zenodo: Along with all the input datasets (many Gigabytes) and software
(for example zenodo.6533902, also see comments in arXiv links above) and given a unique DOI.

▶ Software Heritage: to archive the full version-controlled history of the project.
(for example swh:1:dir:33fea87068c1612daf011f161b97787b9a0df39fk)

https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1911.01430
https://arxiv.org/abs/2006.03018
https://arxiv.org/abs/2007.11779
https://arxiv.org/abs/2010.03742
https://arxiv.org/abs/2112.14174
https://doi.org/10.5281/zenodo.6533902
https://archive.softwareheritage.org/swh:1:dir:33fea87068c1612daf011f161b97787b9a0df39f;origin=http://git.maneage.org/paper-concept.git/;visit=swh:1:snp:89af43c4b076a17d9298299f224247038af355ea;anchor=swh:1:rev:313db0b04bd3499f83d9e79fd7e92578cd367c2b

Software Heritage IDs (SWHID); persistent identifier for source code (or any text!)

For more details, see SoftwareHeritage FAQ (at https://www.softwareheritage.org/faq)

https://www.softwareheritage.org/faq

Executing a Maneaged project (for example arXiv:2006.03018)

$ git clone https://gitlab.com/makhlaghi/maneage-paper # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2006.03018

Executing a Maneaged project (for example arXiv:2006.03018)

$ git clone https://gitlab.com/makhlaghi/maneage-paper # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2006.03018

Executing a Maneaged project (for example arXiv:2006.03018)

$ git clone https://gitlab.com/makhlaghi/maneage-paper # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2006.03018

Future prospects...

Adoption of reproducibility by many researchers will enable the following:

▶ A repository for education/training (PhD students, or researchers in other fields).

▶ Easy verification/understanding of other research projects (when necessary).

▶ Trivially test different steps of others’ work (different configurations, software and etc).

▶ Science can progress incrementally (shorter papers actually building on each other!).

▶ Extract meta-data after the publication of a dataset (for future ontologies or vocabularies).

▶ Applying machine learning on reproducible research projects will allow us to solve some Big
Data Challenges:

▶ Extract the relevant parameters automatically.

▶ Translate the science to enormous samples.

▶ Believe the results when no one will have time to reproduce.

▶ Have confidence in results derived using machine learning or AI.

Summary:
Maneage (https://maneage.org) is a customizable template that will for research or data reduction:

▶ Automatically downloads the necessary software and data.

▶ Builds the software in a closed environment.

▶ Runs the software on data to generate the final research results.

▶ Modification of part of the analysis will only result in re-doing that part, not the whole project.

▶ Using LaTeX macros, paper’s figures, tables and numbers will be Automatically updated.

▶ The whole project is under version control (Git) to allow easy reversion to a previous state. This
encourages tests/experimentation in the analysis.

▶ The Git commit hash of the project source, is printed in the published paper and saved on output
data products. Ensuring the integrity/reproducibility of the result.

▶ These slides are available at https://maneage.org/pdf/slides-intro-short.pdf.

▶ Longer slides are available at https://maneage.org/pdf/slides-intro.pdf.

▶ YouTube recording (May 2021): https://www.youtube.com/watch?v=XdhRUhoMqw0

▶ Matrix-protocol chat room: #maneage-general:matrix.org

For a technical description of Maneage’s implementation, as well as a checklist to customize it, and
tips on good practices, please see this page:
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

https://maneage.org
https://maneage.org/pdf/slides-intro-short.pdf
https://maneage.org/pdf/slides-intro.pdf
https://www.youtube.com/watch?v=XdhRUhoMqw0
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

